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Abstract 33 

Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to 34 

promoters. However, the relationships between TFs, promoters and their associated cofactors 35 

remain poorly understood. Here, we combine GAL4-transactivation assays with comparative 36 

CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters 37 

in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as 38 

ubiquitous or specific, and discover transcriptional co-dependencies. Through a reductionistic, 39 

comparative approach, we demonstrate that TFs do not display discrete mechanisms of 40 

activation. Instead, each TF depends on a unique combination of cofactors, which influences 41 

distinct steps in transcription. In contrast, the influence of core promoters appears relatively 42 

discrete. Different promoter classes are constrained by either initiation or pause-release, which 43 

influences their dynamic range and compatibility with cofactors. Overall, our comparative 44 

cofactor screens characterize the interplay between TFs, cofactors, and core promoters, 45 

identifying general principles by which they influence transcription.  46 
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Introduction 47 

Regulation of gene expression allows different cell states to arise from a single genome. This 48 

process is coordinated by transcription factors (TFs), which use DNA binding domains to 49 

recognise DNA sequences, and specialised activation domains (ADs) to recruit the 50 

transcriptional cofactors (cofactors) required for gene regulation1,2. The recruited cofactors can 51 

remodel chromatin, modify histones or act as multi-subunit protein complexes that link with 52 

the transcriptional machinery3. Importantly, cofactors do not demonstrate DNA sequence 53 

specificity and are generally recruited to specific loci by TFs.  54 

 55 

Despite decades of research, our understanding of why certain cofactors are needed by different 56 

TFs remains incomplete1,4,5. Structural approaches, which have been critical in characterising 57 

the DNA binding domains of TFs, have been unable to provide insights into function of ADs 58 

as they are often unstructured5,6. Moreover, since transcription is such a complex process, 59 

traditional functional approaches are generally unable to deconvolute how each of the various 60 

regulatory inputs (such as the activating TF, collaborating TFs, core promoter or cellular 61 

context) influences which cofactors are used. Thus, exploring how TFs and core promoters 62 

influence the mechanisms of transcription requires a reductionist approach, where ADs and 63 

promoters can be isolated and studied independently of other variables.  64 

 65 

In recent years, such systematic, synthetic approaches have provided important insights7–11. 66 

For example, a recent study assessed the requirement for individual cofactors across thousands 67 

of promoters and enhancers, identifying widespread variation in cofactor requirements8. 68 

However, the reciprocal approach, to define the entire range of cofactors needed by individual 69 

TFs or promoters, has yet to be performed1,12. Consequently, a number of key questions about 70 

cofactor specificity and cofactor-promoter compatibility remain unanswered1,5,12–18. 71 

 72 

Results 73 

Establishing a transcription factor-based screening system 74 

To address this challenge, we developed a screening system consisting of (i) a GAL4-DNA 75 

binding domain fused to a transactivation domain of interest and (ii) a reporter containing 76 

GAL4 binding motifs upstream of a mCMV promoter driving a fluorescent reporter (Extended 77 

Data Fig.1A-B). This reductionistic design controls the promoter and DNA-binding element to 78 

isolate how the activation domain alters the cofactors used for transcription. To enable 79 

investigation of all transcriptional regulators, including those required for cell survival, our 80 
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reporter construct contains an unstable GFP19. Using this reporter, we observed a dramatic 81 

reduction of fluorescent signal within 24 hours (hrs) of transcription inhibition, prior to cell 82 

death (Extended Data Fig.1C-D) and detected complete loss of expression upon knockout (KO) 83 

of the catalytic subunit of RNA polymerase II (POLR2A) (Extended Data Fig.1E), 84 

demonstrating our ability to identify common-essential proteins necessary for transcription.  85 

  86 

We decided to investigate the cofactors needed by a representative set of nine transcription 87 

factors with diverse and important functions in synthetic biology, development and disease. 88 

These include VP64, c-MYB (MYB), EWSR1 (EWS), p65 (NF-kB), p53, IRF1, PU.1, 89 

NOTCH and glucocorticoid receptor (GR). The AD regions used were largely unstructured, 90 

enriched for acidic, proline and glutamine residues, and previously shown to have activation 91 

potential (Extended Data Fig.1B and Supplementary Table 1,2).  92 

 93 

To perform genetic screens using these ADs, we developed an isogenic, constant reporter line 94 

by lentiviral integration of the reporter construct at high multiplicity of infection (MOI) into a 95 

Cas9-K562 clone. Polyclonal, high MOI integration enabled detection of the unstable GFP, 96 

while also reducing the potential for technical artefacts associated with a single integration site. 97 

To illustrate the robustness of our approach, firstly, we introduced our reporter into the 98 

endogenous AAVS safe-harbour locus and validated hits identified from our screens (Extended 99 

Data Fig.2A). Secondly, we developed an independent reporter line through a separate viral 100 

transduction, which is unlikely to share the same integration sites. We observed a very high 101 

correlation (r=0.918, Pearson) between screens performed on lines derived from separate 102 

transductions (Extended Data Fig. 2B). Lastly, we replicated the screen using an insulated 103 

reporter introduced via piggyBac integration. In this setting, the AD is fused to an artificial 104 

zinc-finger protein (ZFP), rather than GAL4, and recruited to an alternative DNA binding 105 

sequence (Extended Data Fig.2C). Despite differences in the DNA binding domain and DNA 106 

context, the results were highly correlated (r=0.830, Pearson) (Extended Data Fig.2C).  107 

 108 

The nine GAL4-AD constructs were introduced into this constant reporter line, after which we 109 

confirmed that GFP signal was completely GAL4 dependent (Extended Data Fig.2D). Some 110 

TFs, such as VP64 and MYB, are known to be particularly dependent on certain cofactors. To 111 

validate that we could capture this specificity, we confirmed that these ADs were 112 
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disproportionately affected by loss of MED25 and p300 respectively20–23 (Extended Data 113 

Fig.1E). 114 

 115 

Having established the validity and reproducibility of our platform, we used the nine GAL4-116 

AD reporter lines to perform comparative CRISPR-Cas9 screens with a bespoke guide RNA 117 

(gRNA) library targeting 1137 transcriptional regulators and chromatin-associated proteins 118 

(Supplementary Table 3). To minimise technical variation, the screens were performed in 119 

parallel, and cells with a reduction in transcription (as measured by GFP signal) were harvested 120 

at three timepoints (Day 5, Day 6, Day 7 post guide library infection). Isolating at multiple 121 

timepoints enabled robust quantitative comparisons of the effects of different cofactors on AD 122 

activity (Extended Data Fig.3A, Supplementary Note 1). Altogether, we identified 239 genes 123 

in the library as significantly enriched for at least one of the nine ADs (Supplementary Table 124 

4). As expected, hits clustered together by STRING analysis, with enrichment for RNA 125 

polymerase initiation and elongation, Mediator complex, SWI/SNF components and 126 

SET/COMPASS family members (Extended Data Fig.3B-C).  127 

 128 

To confirm that we could separate transcriptional effects from effects on viability, we 129 

intersected the screen hits with dropout data from matched samples. Approximately 30% of 130 

genes required for cell growth were not significantly enriched in any AD screen (Extended 131 

Data Fig.3D). Similarly, integration with DEPMAP, identified that many common-essential 132 

cofactors were not enriched for any AD (Extended Data Fig.3E). We also confirmed that there 133 

was not substantial dropout of essential genes at the screen timepoints (Extended Data Fig.3F-134 

G), and essential genes did not display more variability relative to non-essential genes 135 

(Extended Data Fig.3H). Together this demonstrates that our screens can identify essential 136 

transcriptional regulators, divorcing their contribution to transactivation from their requirement 137 

for cell viability. 138 

 139 

Overview of the specificity of TF-cofactor interactions  140 

To represent this large dataset, we developed a spoke and wheel plot to provide an overview 141 

of dependence on key transcriptional regulators across the 9 ADs (Fig. 1). As expected, the 142 

entire RNA polymerase II (RNA Pol II) complex is necessary for all of the ADs (90/90 possible 143 

enrichments). As are components of the preinitiation complex, such as TFIIA, TFIIB, TFIIE, 144 

TFIIF, TFIIH, the FACT complex and DSIF components. Beyond these core transcriptional 145 

proteins, other coactivator complexes, such as Mediator, SET/COMPASS, Integrator, 146 
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chromatin remodellers and transcriptional elongation components display more interesting 147 

patterns.  148 

 149 

Reassuringly, our approach identified several previously reported interactions between TFs and 150 

cofactors, including MYB-p30020,24, MYB-TAF1225, VP64-MED2521–23, p53-CDK826 and 151 

NOTCH-WDR527 (Fig.1). In addition to these known interactions, several novel TF-cofactor 152 

associations were observed. One that was particularly striking was a submodule of Integrator 153 

containing INTS5, INTS2 and INTS828 , which is especially important for NF-kB activity 154 

(Fig.1, Extended Data Fig.4A). To confirm that INTS5 is preferentially needed for the 155 

endogenous activity of NF-kB, we treated K562 cells with TNF-a and assessed the effects in 156 

control and INTS5 KO cells. By cell surface and ChIP-seq analyses, we also confirmed that 157 

INTS5 KO has an impact on endogenous NF-kB activity (Extended Data Fig.4), illustrating 158 

that our method was able to identify endogenous cofactor dependencies for specific TFs.  159 

 160 

Exploring cofactor specificity across activation domains 161 

Our comparative screens not only serve as an important resource, but also provide the 162 

opportunity to obtain systematic insights into the transactivation process. To begin with, we 163 

explored the relationship between cofactor specificity and quantitative contribution to 164 

transcription. In general, we observed that cofactors that contribute broadly to activation by 165 

most ADs, tend to display higher enrichment (Fig.2A). Interestingly, we observed very few 166 

examples of cofactors with potent and highly selective requirement, with the notable exception 167 

of NCOA1, which is a major dependency for Glucocorticoid Receptor-mediated 168 

transactivation. This suggests that, in general, TFs do not to have highly specific, dedicated 169 

cofactors that contribute strongly to transcription.  170 

 171 

A lack of potent, selective cofactors does not necessarily imply generic mechanisms of 172 

transactivation. Instead, our data suggests that rather than using dedicated cofactors, ADs may 173 

achieve specificity by using unique combinations of cofactors (Fig.1). To explore this 174 

possibility, we first identified heterogeneously enriched cofactors across the 9 screens, 175 

anchoring the analysis on cofactors that are not expected to be variable (i.e. RNA Pol II). This 176 

analysis identified ~100 cofactors that display heterogeneity in their requirement, some of 177 

which were enriched for a large number of ADs, such as p300 or CHD1, and others that are 178 

enriched for few ADs, such as SETD1B or NCOA1 (Fig.2B).  179 
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To identify patterns in our data, we performed Pearson-based hierarchical clustering of the top 180 

50 heterogeneous cofactors. The data was bi-clustered to identify ADs with similar patterns of 181 

cofactor dependency and cofactors with similar patterns of enrichment across ADs (Fig.2C). 182 

Clustering of ADs demonstrates, that for the most part, ADs do not separate into a small number 183 

of discrete groups. Interestingly, Glucocorticoid Receptor clustered away from the other ADs, 184 

perhaps due to its structured AD (Fig.2C, Extended Data Fig.1B). Similarly, clustering of the 185 

cofactors was relatively indiscrete, with no clear co-dependency relationships identified 186 

between distinct cofactor complexes. The few co-dependent clusters identified were within 187 

large multi-subunit complexes, such as MED16, MED24 and MED25 (Mediator), and INTS2, 188 

INTS5 and INTS8 (Integrator) (Fig.2C). Together, this suggests that, while certain ADs utilise 189 

submodules of multi-subunit complexes, each AD is dependent upon a different combination 190 

of cofactors. 191 

 192 

To provide further confidence in these results, we selected eleven heterogeneous cofactors, and 193 

independently quantified their contribution to transactivation by each AD. Overall, with some 194 

minor exceptions, we observed a high degree of concordance between the enrichment scores 195 

reported by the screen and the reduction in GFP signal in each respective AD line, 196 

demonstrating that the heterogeneity is genuine and reinforcing the quantitative nature of the 197 

screens (Fig.2D, Extended Data Fig.5). Importantly, the heterogeneity was reproduced using 198 

rapid protein degradation and specific inhibitors at a much earlier timepoint (Extended Data 199 

Fig. 6). We also confirmed that transcriptional regulation of the GAL4-ADs (Extended Data 200 

Fig.7A-C), GAL4-AD protein levels and stability (Extended Data Fig.7D), or GAL4-AD 201 

chromatin occupancy (Extended Data Fig.7E), are unlikely to be major contributors to the 202 

cofactor heterogeneity observed.  203 

 204 

Taken together, our screen and validation data illustrate that cofactor dependence across 205 

different ADs does not conform to simple patterns. Instead, our data suggests that each AD 206 

uses a unique set of cofactors to activate transcription (Fig.1, Fig.2C-D).   207 

 208 

Co-dependency between Mediator tail 2 and the kinase module  209 

While cofactors from distinct chromatin complexes did not show clear co-dependencies, our 210 

Pearson-based clustering identified highly correlated, co-dependent cofactors within multi-211 

subunit complexes (Fig.1, Fig.2C). Clustering of all ~100 heterogeneous cofactors identified 212 

strong correlations within tail 2 of the Mediator complex (MED16, MED23, MED24, MED25), 213 
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CDK12 and its associated cyclin CCNK, subunits of the Integrator complex (INTS2, INTS5, 214 

INTS8) and PAF1/WDR61 (Extended Data Fig.8A-B).  215 

 216 

Due to its key role in transcription, we were particularly interested in co-dependencies observed 217 

within the Mediator complex. Mammalian Mediator is organised into 5 major modules – head, 218 

middle, tail 1 (upper tail), tail 2 (lower tail) and sub-stoichiometric kinase module29,30 (Fig.3A). 219 

Whilst structural composition has been well-characterised, functional relationships within the 220 

complex remain poorly understood. Our data suggests that the head, middle and tail 1 modules 221 

are ubiquitously enriched (Fig.3A), with most of the functional heterogeneity observed in the 222 

tail 2 module, kinase module and MED1, which is structurally positioned proximal to tail 2 223 

(Fig.3A).  224 

 225 

We noted that enrichment of tail 2 subunits is strongly correlated, and that they correlate with 226 

the sub-stoichiometric kinase module (Fig.2C-D, Fig.3A, Extended Data Fig.8B). VP64, EWS, 227 

NF-kB and p53 are highly dependent on tail 2 and the kinase module, while MYB and 228 

Glucocorticoid Receptor are largely tail 2 independent and show minimal requirement for 229 

kinase module subunits (Fig.2C-D, Fig.3A, Extended Data Fig.6A). To test whether this co-230 

dependency extends beyond our screening system, we performed RNA Pol II ChIP-seq upon 231 

genetic deletion of tail 2 subunits (MED16, MED24, MED25), the kinase module (CDK8, 232 

MED12, CCNC) and a core structural subunit (MED14) and assessed whether the effects were 233 

correlated at endogenous genes. As expected29,31, loss of the core subunit (MED14) led to a 234 

marked, relatively uniform decrease in RNA Pol II levels (Fig.3B). In contrast, loss of tail 2 235 

subunits (MED16, MED24, MED25) or the kinase module (CDK8, MED12, CCNC) resulted 236 

in disproportionate effects on particular subsets of genes (Fig.3B)32. Importantly, the effects of 237 

disrupting individual tail 2 and kinase subunits were highly correlated, with clear concordance 238 

between the rank order of genes effected by MED16, MED24, MED25, MED12, CDK8 and 239 

CCNC loss (Fig.3B-C). Consistent with our screens, correlation is strongest within tail 2, with 240 

a minority of tail 2 dependent genes, not dependent on CDK8 and CCNC (Fig.3B-C). 241 

Importantly, the co-dependency is highly specific to tail 2 and the kinase module, as there was 242 

minimal correlation with disruption of the core (MED14 KO) (Fig.3B-C).  243 

 244 

To confirm these results are likely due to direct functional interplay between these submodules, 245 

we developed dTAG lines33 to rapidly degrade MED12, MED14 and MED25 (Fig.3D, 246 
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Extended Data Fig.8C). Using these degron lines and a CDK8 inhibitor, we monitored RNA 247 

Pol II chromatin occupancy upon rapid perturbation of these subunits (Fig.3E and Extended 248 

Data Fig.8D-F). Consistent with our CRISPR KO results, we confirmed a high correlation 249 

between perturbations of tail 2 and kinase module subunits (MED12, MED25 and CDK8, 250 

r=0.6–0.73, Pearson), with markedly less correlation with loss of the core (MED14, r=0.33–251 

0.45, Pearson) (Fig.3E). Taken together, our comparative screens uncover a previously 252 

uncharacterised functional association within tail 2, and between tail 2 and the kinase module 253 

of the Mediator complex. 254 

 255 

TFs and cofactors influence different steps in transcription 256 

As transcription is a multistep process that involves promoter opening, initiation, pausing, 257 

elongation and termination, we hypothesised that TFs may recruit diverse cofactors to influence 258 

different steps in transcription. To explore this hypothesis, we used ChIP-nexus34 to precisely 259 

map RNA Pol II on the reporter construct in each of the GAL4-AD cell lines. Remarkably, 260 

when the reporter is activated by different ADs, we observed differences in the ratio of RNA 261 

Pol II within the gene body, relative to the amount adjacent to the TSS (Fig.4A), suggesting 262 

that TFs have different capacities to facilitate RNA Pol II initiation and elongation.  263 

 264 

Importantly, the degree of elongating RNA Pol II was associated with enrichment of cofactors 265 

involved in RNA Pol II pause-release (Fig.4A). Notably, the two ADs with the highest 266 

elongation ratios, VP64 and NF-kB, were most dependent on major pause-release regulators, 267 

NELF and Integrator (Fig.4A). Interestingly, each of these ADs were most dependent on 268 

different regulators of pausing (Fig.4A), supporting the prospect of multiple, independent 269 

pause-release checkpoints35. We also observed that other regulators of elongation, such as 270 

CDK8, CCNC, CDK9, CDK12, ELL1, PAF1 and CDC73, displayed a general correlation 271 

between screen enrichment and the proportion of elongating RNA Pol II (Fig.4A).  272 

 273 

While no cofactor alone is predictive of elongation potential, we were struck by the association 274 

between the proportion of elongating RNA Pol II and dependence on Mediator kinase (CDK8) 275 

and its associated cyclin (CCNC) (Extended Data Fig.9A-B). Based on the co-dependency 276 

between CDK8 kinase module and tail 2 of Mediator (Fig.2, 3), we considered the prospect 277 

that some TFs, such as VP64, interact with subunits in tail 2 to engage the kinase module to 278 

potentiate elongation21. To test this idea, we assessed RNA Pol II in the VP64 cell line treated 279 
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with CDK8 inhibitor. Here, CDK8 inhibition reduced the ability of the VP64-AD to potentiate 280 

elongation (Fig.4B) whereas elongation was unperturbed by CDK8 inhibition in cells 281 

expressing MYB-AD (Fig.4B), which is not reliant on CDK8 or tail 2 for transactivation 282 

(Fig.2C-D, Fig.3A). Together these findings suggest that these submodules of Mediator are 283 

preferentially used by certain TFs to facilitate transcriptional elongation36. 284 

 285 

Exploring the influence of core promoters on transcription 286 

Transactivation requires cofactors to converge onto a promoter where RNA Pol II is loaded. 287 

Our screens suggest that TFs recruit diverse sets of cofactors to potentiate different steps in 288 

transcription. However, it remains unclear how the core promoter influences which cofactors 289 

are needed. To address this, we adapted our screening system to vary the core promoter while 290 

maintaining a constant activation domain (Nf-KB) (Extended Data Fig.10A). We chose to 291 

study promoters containing different well-characterised core promoter elements: (i) TATA 292 

box, (ii) TATA-like element with reduced affinity for TBP37–39, (iii) Initiator sequence (Inr) 293 

and/or (iv) polypyrimidine Initiator (TCT) sequence (Extended Data Fig.10B). These core 294 

motifs are associated with different classes of genes, suggesting that they influence how their 295 

associated genes are regulated40. Many genes containing a TATA box have focussed promoters 296 

that are tissue specific, have a large dynamic range and can be rapidly induced41–45. In contrast, 297 

the TCT element is present in housekeeping genes, primarily ribosomal proteins46, which are 298 

often widely expressed across tissues and have a narrow dynamic range in gene expression41. 299 

Interestingly, previous reports indicate that these promoter classes are differentially responsive 300 

to NF-kB7, suggesting inherently different mechanisms of regulation; an observation we 301 

confirmed using our transactivation system (Extended Data Fig.10C) 302 

 303 

We hypothesised that our comparative cofactor screens could demonstrate how different core 304 

promoters influence cofactor requirements, while also providing mechanistic insights into 305 

cofactor-promoter compatibility7. To this end, we created nine independent promoter lines and 306 

performed the screens using the same experimental design described earlier (Extended Data 307 

Fig.3A and Methods). The results of these screens are summarised with another spoke and 308 

wheel chart, which provides a global overview of how core promoters influence the 309 

mechanisms of transcription (Fig.5A, Supplementary Table 5).  310 

 311 

Using the same approach as the AD screens, we began by isolating the most heterogeneously 312 

enriched cofactors across 9 core promoters and performed Pearson-based hierarchical 313 
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clustering to unbiasedly identify patterns in the data. Interestingly, this analysis separated the 314 

highly responsive TATA/TATA-like promoters from less responsive TCT promoters, 315 

suggesting that differential cofactor use underpins differences in compatibility (Fig.5B). In 316 

stark contrast with the AD screens (Fig.2C), cofactor clustering across core promoters was 317 

discrete (Fig.5B). Promoters containing similar core motifs displayed relatively similar 318 

cofactor requirements, with cofactors clustering primarily based on their degree of dependence 319 

at TATA/TATA-like or TCT promoters (Fig.5B).  320 

 321 

Amongst the cofactors with differential enrichment between promoter classes were various 322 

components of the TFIID complex. As expected, TBP was identified as a major requirement 323 

for promoters with a TATA box (Fig.5A). Consistent with recent structural studies, in which 324 

TAF11 and TAF13 form a bridge linking TBP to TFIID47, we identified that these two subunits 325 

are also needed together with TBP. Notably, components of this submodule of TFIID were 326 

largely not necessary for activation at TCT-containing core promoters (Fig.5A-C). At TCT-327 

containing promoters, we instead identified an increased dependence on TAF1, TAF2, TAF7 328 

and TAF8, which are structurally co-located and interact with promoter elements in a manner 329 

distinct from TBP (Fig.5A-C)47–50. Our data suggests TFIID-mediated assembly of the pre-330 

initiation complex is required across all of these core promoters, however promoters lacking a 331 

TATA box are more dependent on the TAF2/7/8 submodule for TFIID assembly.  332 

 333 

We also observed that TATA/TATA-like and TCT promoters were differentially dependent on 334 

submodules of Mediator (Fig.3), Integrator (Extended Data Fig.4) and several other cofactors 335 

implicated in pause-release and elongation (Fig.1, Fig4A, Fig.5A-C). Interestingly, these 336 

cofactors were generally much less enriched at TCT promoters, which are less responsive to 337 

NF-kB-AD (Fig.5A-C). The inability for pause-release cofactors to contribute to transcription 338 

at TCT promoters suggests that their reduced responsiveness may be due to differences in the 339 

rate-limiting step for activation. To test this hypothesis, we performed RNA Pol II ChIP-nexus 340 

on our reporter constructs containing the responsive (TATA) and unresponsive (TCT) 341 

promoters activated by the NF-kB-AD. TATA promoters displayed clear evidence of RNA Pol 342 

II accumulation at the pause site, suggesting that pausing is the rate-limiting step (Fig.6A). In 343 

contrast, both unresponsive TCT promoters display a ~10-fold lower in accumulation of RNA 344 

Pol II around the TSS and no discernible pausing of RNA Pol II (Fig.6A). This suggests that 345 

output from these TCT promoters is constrained by the rate of RNA Pol II initiation rather than 346 
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pause-release. Based on these findings, we hypothesize that cofactor/promoter incompatibility 347 

occurs when TFs recruit cofactors to promoters which do not activate the appropriate rate-348 

limiting step for transcription. 349 

 350 

To provide further support for this hypothesis, we swapped promoter elements from the 351 

responsive and unresponsive promoters in an attempt to alter the rate-limiting step and 352 

therefore influence cofactor-promoter compatibility (Fig.6B). Replacing the TCT motif with 353 

an Initiator motif from TATA or TATA-like promoters did not influence responsiveness, 354 

demonstrating that Initiator motifs alone do not have a dominant influence on cofactor-355 

promoter compatibility (Fig.6B). However, adding a TATA or TATA-like element and an 356 

Initiator motif into the unresponsive RPL30 promoter, completely restored responsiveness, 357 

markedly increasing the dynamic range of gene expression (Fig.6B). Importantly, these 358 

changes induced dependency on the pause-release cofactor, CDK8, suggesting that pause-359 

release and elongation became the rate-limiting step (Fig.6B).  360 

 361 

TATA boxes increase the rate of transcriptional initiation by enabling efficient assembly of the 362 

pre-initiation complex51,52 and our screens, and prior work53,54 suggest that the incompatible 363 

TCT promoters are more dependent on a submodule of TFIID that is TBP-independent (Fig.5). 364 

This suggests that by adding a TATA box to this unresponsive promoter, we increased the 365 

initiation rate, changing the rate-limiting step from initiation to elongation, restoring cofactor-366 

promoter compatibility and increasing the dynamic range of gene expression. Overall, our data 367 

supports a model of cofactor-promoter compatibility dictated by core promoter motifs that 368 

result in different rate-limiting steps in transcription (Fig.6C).  369 
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Discussion 370 

Using a synthetic, reductionistic screening system, we have provided key insights into how 371 

TFs and core promoters influence the cofactors required for transcription. Our comparative 372 

screens across 9 different ADs suggest that TFs rarely have highly specific, dedicated cofactors 373 

with a dominant contribution to transactivation. In contrast, each AD appears to use unique 374 

combinations of cofactors. Even when cofactors contribute to transactivation by many TFs (i.e., 375 

p300), they can still display variable contributions to transcription. Consequently, there are 376 

likely to be a large number of distinct mechanisms by which genes can be activated. Due to our 377 

reductionistic design, it is likely that cofactor preference is conferred by AD sequence, however 378 

precisely how these intrinsically disordered domains achieve this specificity remains unclear.  379 

 380 

Exactly why each AD requires a unique combination of cofactors also remains unclear. One 381 

possibility is that this type of combinatorial specificity enables TFs to integrate a large amount 382 

of information about cellular state when activating their targets55–57. Another possibility is that 383 

cofactor specificity enables TFs to regulate distinct steps in transcription. While previous 384 

reports have suggested that different TFs can activate different steps58–60, here we demonstrate 385 

that these differences are associated with differences in cofactor use, providing important 386 

mechanistic insights into this process. This ability for different TFs to activate different steps 387 

in transcription provides the capacity for kinetic synergy61,62. Kinetic synergy creates an AND 388 

logic, where only in the context of complementary TFs does transcription proceed at maximum 389 

efficiency. Therefore, TFs may use different sets of cofactors, to enable more complex logic 390 

downstream of DNA binding, or enable different kinetic behaviours, that would not be possible 391 

if each TF used the same set of cofactors5,45,59,63. 392 

 393 

We also extended our screens to address how core promoters influence cofactors use. In stark 394 

contrast to ADs, the influence of core promoters appears to be discrete. Core promoters with 395 

highly divergent sequences, from distinct origins (synthetic, viral or endogenous), but sharing 396 

similar promoter motifs, displayed similar cofactor requirements. This suggests that the logic 397 

of core promoters is relatively simple, an observation supported by recent deep learning and 398 

mutational approaches64–66. Despite similarities within promoter classes, distinct classes 399 

displayed dramatic differences for cofactors involved in transcriptional initiation and 400 

elongation. Importantly, these differences were associated with responsiveness to the NF-kB-401 

AD, leading us to propose a rate-limiting step model of cofactor-promoter compatibility (Fig. 402 
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5C). TCT promoters, which often regulate genes with a narrow range of gene expression, 403 

appear to be constrained by initiation rate, restricting their ability to respond to NF-kB-AD. In 404 

contrast, TATA gene promoters, which often regulate dynamically expressed genes, appear to 405 

be constrained by pause-release, enabling greater responsiveness and a higher dynamic range 406 

in gene expression67. This raises the prospect that the pause-release checkpoint evolved to 407 

enable a higher dynamic range for genes with promoter elements that efficiently assemble RNA 408 

Pol II. Overall, our comparative cofactor screens support a model of transactivation in which 409 

promoters establish different rate-limiting steps, that are activated by specific TFs, in order to 410 

achieve effective regulation of ubiquitous or inducible gene expression.  411 

 412 

Our comparative screens required a genetic approach and a reductionistic design. Whilst our 413 

experiments using rapid protein degradation and transcriptional inhibitors suggest that our 414 

major findings result from direct effects, future work assessing other candidates should also 415 

employ methods with rapid kinetics. Further work will also be needed to consider how other 416 

variables, such as different TF domains, chromatin context, regulation from distal enhancers, 417 

and combinations of TFs, interact to regulate endogenous gene expression.  418 



 15 

Acknowledgements  419 

The authors would like to acknowledge all members of the Dawson Lab for their support and 420 

intellectual input throughout the project. We would also like to acknowledge the Peter 421 

MacCallum Cancer Centre Flow Cytometry and Genomics core facilities for their assistance 422 

with the research. Funding: This research was supported by Cancer Council Victoria 423 

Postdoctoral fellowship (C.C.B), NHMRC Investigator Grant (1196749) (M.A.D), Cancer 424 

Council Victoria Dunlop Fellowship (M.A.D), Howard Hughes Medical Institute international 425 

research scholarship (55008729) (M.A.D) and ARC project grant (DP220103927) (M.A.D).  426 

 427 

Author Contributions 428 

C.C.B, O.G and M.A.D designed the research and interpreted data. M.A.D supervised the 429 

research, with assistance from C.C.B. C.C.B and M.A.D wrote the manuscript with helpful 430 

input from all the authors. C.C.B performed the experiments with assistance from J.J.B, L.S, 431 

C-S.A and O.G. G. J. F provided critical research support and input. L.T performed the 432 

bioinformatic analysis with assistance from A.G and E.Y.N.L and input from C.C.B and 433 

M.A.D. 434 

 435 

Competing Interests 436 

M.A.D. has been a member of advisory boards for GSK, CTX CRC, Storm Therapeutics, 437 

Celgene, and Cambridge Epigenetix and receives research funding from Pfizer. The remaining 438 

authors declare no competing interests.  439 



 16 

Main figure legends 440 

Figure 1) Comparative CRISPR screens identify the cofactors needed by nine different 441 

ADs 442 

Spoke and wheel plot demonstrating the enrichment of key cofactors in each of the 9 AD 443 

screens. The colour in each wedge reflects the average fold enrichment for each AD. Cofactors 444 

are organised into particular complexes based on their known complex associations or 445 

molecular functions. Components of this figure were created with biorender.com.  446 

 447 
 448 
Figure 2) Transcription factors display a diverse range of activation mechanisms 449 

(A) Violin plot of maximum fold enrichment for each cofactor in the library across the 9 AD 450 

screens. The number of genes in each category is displayed. (B) Violin plot of the coefficient 451 

of variation for each gene across the 9 screens. Selected variable genes are listed. Genes that 452 

were validated by independent KO experiments are highlighted in bold. (C) (Left) Heatmap 453 

showing the enrichment of the top 50 most heterogeneously used cofactors across the 9 AD 454 

screens. Heatmap is bi-clustered by Pearson correlation distance. Pearson correlation matrices 455 

are displayed alongside the heatmap to enable visualisation of which cofactors (right) and ADs 456 

(bottom) display correlated patterns of enrichment. (D) Heatmap comparing fold enrichment 457 

in the screens (left) with fold change in GFP upon knockout of various candidate, 458 

heterogeneous cofactors (right). Fold reduction in GFP calculated by dividing the average 459 

fluorescence signal (M.F.I) in perturbed cells by the M.F.I in cells containing the safe guide 460 

control at D5 after sgRNA infection. Fold reduction in GFP calculated based on at least two 461 

sgRNAs per gene.  462 

 463 

Figure 3) A direct co-dependent relationship between the tail 2 and kinase modules of the 464 

Mediator complex 465 

(A) Spoke and wheel plot of the fold enrichment of Mediator complex subunits across the nine 466 

ADs. (B) Waterfall plots showing the change in RNA pol II levels at Mediator dependent genes 467 

after individual subunit KO. Mediator dependent genes defined as genes with at least 30% 468 

reduction in RNA pol II signal upon MED14 KO. Each sample is compared to a safe guide 469 

control to calculate a change in RNA pol II ChIP-seq signal. The genes are ordered based on 470 

the degree of reduction in each KO sample enabling direct comparison of whether the same 471 

genes are affected by removal of different subunits. Spearman rank order correlation is 472 

displayed on each waterfall plot. The colour of each sample reflects which submodule it 473 
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belongs to. Orange = middle/core, blue = tail 2 and purple = kinase module. (C) Correlation 474 

matrix of the spearman rank order correlation coefficient upon KO of various components of 475 

the Mediator complex. (D) Western blot for HA-dTAG-tagged MED12, MED14 and MED25 476 

after 4hrs of dTAGV-1 or CDK8i treatment. Alpha-Tubulin displayed as loading control. 477 

Representative blot of two biological replicates. Blot performed on matched samples from 478 

ChIP-seq and SLAM-seq experiments. (E) Scatter plots demonstrating the correlation between 479 

the change in RNA pol II ChIP-seq signal upon MED12, MED14, MED25 degradation (4hrs 480 

dTAGV-1) and CDK8i treatment (4hrs). Fold change calculated by comparing each sample to 481 

matched DMSO treated control. Red line and r value reflect Pearson correlation.  482 

 483 

Figure 4) Transcription factors use different cofactors to regulate different steps in 484 

transcription 485 

(A) (Left) RNA pol II ChIP-nexus coverage across the reporter construct in each of the GAL4-486 

AD cell lines. Blue signal reflects reads from the sense strand, red signal reflects reads from 487 

the anti-sense strand and shaded blue signal reflects cumulative signal between both strands. 488 

Elongation index is the inverse of the pausing index i.e., total gene body signal divided by the 489 

total promoter signal. (Right) Heatmap displaying fold enrichment of various key regulators of 490 

pause-release and transcriptional elongation in each AD screen. (B) RNA pol II ChIP-nexus 491 

coverage across the reporter construct in the GAL4-VP64 and GAL4-MYB cell lines treated 492 

for 1hr with DMSO or CDK8i. Blue and red lines reflect cumulative ChIP-nexus signal in 493 

DMSO and CDK8i treatment respectively. Quantification of the change in GFP upon CDK8i, 494 

CDK8 KO and CCNC KO in these two cell lines is also shown. For GFP quantification, n = 3 495 

biological replicates, error bars = S.E.M. 496 

 497 

Figure 5) Comparative screens shows discrete cofactor preferences dictated by core  498 

promoter elements 499 

(A) Spoke and wheel plot demonstrating the enrichment of key cofactors in each of the 9 core 500 

promoter screens. The colour in each wedge reflects the average fold enrichment for each AD. 501 

Cofactors are organised into particular complexes based on their known complex associations 502 

or molecular functions. For ease of comparison, the same cofactors are displayed as Fig. 1. (B) 503 

(Left) Heatmap showing the enrichment of the top 50 most heterogeneously used cofactors 504 

across the 9 core promoter screens. Heatmap is bi-clustered by Pearson correlation distance. 505 

Pearson correlation matrices are displayed alongside the heatmap to enable visualisation of 506 

which cofactors (right) and core promoters (bottom) display correlated patterns of enrichment. 507 
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Display is consistent with Fig. 2C to enable direct comparison of the clustering across different 508 

ADs and core promoters. (C) Validation of screen data through quantification change in GFP 509 

signal upon individual cofactor KO. Relative GFP signal is calculated by dividing the average 510 

fluorescence signal (M.F.I) cells containing the safe guide control by the M.F.I in perturbed 511 

cells at D5 after sgRNA infection. n = 2 sgRNAs per gene, error bars = S.E.M. Components of 512 

this figure were created with biorender.com. 513 

 514 

Figure 6) Cofactor-promoter compatibility is influenced by the rate limiting step in 515 

transcription  516 

(A)  RNA pol II ChIP-nexus coverage across the reporter construct in responsive and 517 

unresponsive promoter lines activated by GAL4-NF-kB. Blue signal reflects reads from the 518 

sense strand, red signal reflects reads from the anti-sense strand and shaded blue signal reflects 519 

cumulative signal between both strands. The top number adjacent to the graph reflects the 520 

cumulative normalised read counts from both strands. The bottom two numbers reflect the 521 

normalised read counts from each strand respectively. (B) Luciferase assays performed with 522 

different promoter constructs with or without GAL4-NF-kB demonstrating that adding of a 523 

TATA box restores responsiveness and cofactor-promoter compatibility. CDK8i was dosed for 524 

12hrs prior to luciferase assay. n=3 technical replicates. Error bars = S.E.M. Data is 525 

representative of two independent biological replicates. (C) Rate limiting step model of 526 

cofactor-promoter compatibility. Pause-release cofactors have limited ability to activate 527 

promoters where initiation is the rate-limiting step. + symbols do not directly correspond to 528 

any quantitively information, instead reflecting a conceptual model. 529 

 530 

Figure – Representative FACS gating 531 

Representative gating strategy used to identify GFP positive cells throughout the manuscript. 532 

Live cells are identified by FSC-A and SSC-A, single cells identified by FSC-A and FSC-H 533 

and GFP positive cells gated relative to a negative control population. 534 

535 
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Methods 707 

Cell culture 708 

A clonal K562 Cas9 cell line was generated previously to ensure high efficiency CRISPR 709 

editing68. K562 cells were cultured in RPMI-1640 supplemented with 20% FCS, streptomycin 710 

(100ug/ml), penicillin (100 units/ml) and Glutamax, under standard culture conditions (5% 711 

CO2, 37C). HEK293ET cells were grown in DMEM supplemented with 10% FCS, 712 

streptomycin (100ug/ml), penicillin (100 units/ml) and Glutamax, under standard culture 713 

conditions (5% CO2, 37C). All cell lines were subjected to regular mycoplasma testing and 714 

underwent short tandem repeat (STR) profiling. 715 

 716 

Lentivirus production and transduction 717 

Lentivirus was prepared by transfecting HEK293ET cells with plasmid:pVSV-G:psPAX2 718 

plasmids in a 3:2:1 ratio using PEI reagent. The viral supernatant was collected 48-72hrs 719 

following transfection, filtered through a 0.45 μm filter and added to cells. 720 

 721 

Drug treatment 722 

Senexin A (CDK8i) (Selleckchem) was dosed at 10uM. GAL4-GR cells were dosed with 1uM 723 

Dexamethasone (Sigma) to induce GR activity.  Recombinant human TNF- (Peprotech) 724 

treatment was performed for 6hrs at 25ng/ml. For acute dTAG degradation experiments, cells 725 

were dosed with dTAG-V1 (Tocris Biosciences) at 500nM for 4hrs. For GFP half-life analysis 726 

of the reporter system, cells were treated with triptolide (10uM) 727 

 728 

Flow cytometry analyses 729 

Flow cytometry analyses were performed on the LSRFortessa X-20 flow cytometer (BD 730 

Biosciences). Data were analysed with FlowJo v10 software (Tree Star). Cell sorting was 731 

performed on the FACSAria or Fusion 5 flow sorter (BD Biosciences).  732 

 733 

Cloning of screening system 734 

pKLV-U6gRNA(BbsI)-Puro2ABFP vector was used as the base vector for cloning the lentiviral 735 

GAL4-AD vector. The entire gRNA, Puromycin and BFP regions of the plasmid were removed 736 

and replaced by the GAL4-DBD together with an IgA linker through standard cut and paste 737 

cloning. The EF1a, IRES and mCherry were then introduced sequentially. The vector was 738 

designed for simple cut and paste replacement of the AD region downstream of the GAL4-739 
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DBD with alternative ADs. ADs of interested were amplified by PCR from cDNA expression 740 

vectors obtained from Addgene. Primers used for amplification and the final AD sequences are 741 

listed in Supplementary Table 2 and 6.  742 

 743 

The base for the reporter construct was obtained from Addgene (#79199). The original vector 744 

is a lentiviral vector that includes the 5xUAS upstream of a minimal CMV promoter. 745 

Downstream of this promoter, Turbo-GFP-PEST was subcloned from another Addgene vector 746 

(#67180). To produce different promoter reporters, promoter regions were obtained from 747 

previous publications or from the eukaryotic promoter database (Supplementary Table 2). For 748 

endogenous promoters, a region was selected to capture a 100bp window around the centre of 749 

the CAGE signal reported on the Eukaryotic Promoter Database. Oligos corresponding to these 750 

regions were synthesized by IDT, annealed and cloned into the 5xUAS-mCMV-Turbo-GFP-751 

PEST construct, replacing the mCMV promoter (Supplementary Table 2).  752 

 753 

Generation of GAL4-AD and promoter reporter cell lines 754 

For AD screens, the lentiviral 5xUAS mCMV Turbo-GFP-PEST reporter was introduced into 755 

clonal K562-Cas9-Blasticidine cell line using high titre virus to achieve a high MOI. High MOI 756 

infection is necessary to minimise locus specific effects and to ensure robust detection of GFP 757 

signal upon activation by lower potency ADs. Into this reporter line, each of the GAL4-AD 758 

constructs were introduced at a high MOI (~90-100% of cells infected) by lentiviral integration. 759 

For promoter screens, the lentiviral 5xUAS Turbo-GFP-PEST reporter with variable promoters 760 

were integrated into a clonal K562-Cas9-Blasticidine cell line using high titre virus to achieve 761 

a high MOI. For all cell lines, GFP positive cells were sorted until a pure and stable GFP 762 

population was obtained.  763 

 764 

sgRNA design and cloning 765 

sgRNAs were designed using the IDT CRISPR design tool or were obtained from the 766 

sequences of guides in the pooled guide library. sgRNAs were cloned into the pKLV-767 

U6gRNA(BbsI)-Puro2ABFP vector using standard golden gate cloning.  768 

 769 

sgRNA and primer sequences 770 

The sequences for sgRNA sequences and relevant primer sequences are included in 771 

Supplementary Table 6. 772 

 773 
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Validation and quantification of screen hits 774 

All experiments validating and quantifying the effect of cofactor knockout were performed by 775 

quantifying the mean fluorescence intensity (M.F.I. or average fluorescence signal) of the GFP 776 

reporter at day 5 after infection with the relevant sgRNA. The relative GFP signal was 777 

calculated by dividing average GFP signal in the AD line infected with an sgRNA of interest 778 

by the same AD line infected with a control sgRNA targeting a safe genomic locus (safe guide). 779 

A number of examples of FACS plots used to calculate the change in GFP signal are provided 780 

in Extended Data Fig. 5. Each AD line was infected with the same batch of virus in parallel to 781 

minimise technical variation between the quantification. Cofactors of interest were validated 782 

with at least 2 sgRNAs and at least 2 biological replicates.  783 

 784 

HDR mediated AAVS knock-in 785 

The 5xUAS, mCMV promoter and Turbo-GFP-PEST were cloned by Gibson assembly into 786 

the pMK232 (CMV-OsTIR1-Puro), which contained homology arms for the AAVS locus. The 787 

sgRNA targeting the AAVS was introduced into the pX330-mCherry vector, which contains 788 

both Cas9 and the gRNA. The AAVS-reporter repair template and the pX330-Cas9-AAVS 789 

gRNA vector was electroporated into K562 cells using the Neon Transfection system (Thermo 790 

Fischer) with settings optimised for K562 cells. Single cell clones were sorted 5 days after 791 

transfection and grown out for 2 weeks to obtain sufficient cells for analysis. AAVS knock-in 792 

clones were identified by In-Out PCR and Sanger sequencing. 793 

 794 

Guide library design, generation and cloning 795 

To assess the requirement of transcriptional regulators, a bespoke library of gRNAs that targets 796 

over 1137 known chromatin and transcriptional regulators was designed (Supplementary Table 797 

3). The library was designed through a combination of searches for genes containing domains 798 

enriched in transcriptional regulators and manual curation. Each gene was targeted with 6 799 

independent gRNAs. As controls, the library also contains a large number of guides targeting 800 

safe regions and guides that do not target any genomic locus. The total library contains 7239 801 

gRNAs. The oligo pool was synthesized by CustomArray (Genescript). The sgRNA pool was 802 

PCR amplified and pot cloned into the pKLV-U6gRNA(BbsI)-Puro2ABFP vector using 803 

standard cut and paste cloning. The ligated product was electroporated into Electrocompetent 804 

cells (Lucigen) and grown in liquid culture overnight at 37 degrees before being extracted by 805 

Maxiprep. Low skewing of the plasmid was confirmed by sequencing of the cloned plasmid 806 
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pool. The library had a skew ratio of 4.35 (counts for top 10% of guides divided by counts for 807 

bottom 10% of guides). A skew ratio below 10 is considered acceptable 69. 808 

 809 

Comparative CRISPR screens 810 

Prior to beginning the screens, reporter cell lines were sorted to obtain a pure GFP positive 811 

population. Sufficient cells were used to maintain 1000-fold representation at all stages of the 812 

screening process. The cells were transduced with an appropriate volume of viral supernatant 813 

to ensure only a single guide was present in most cells (MOI < 0.3, mean of 0.21, 814 

Supplementary Table 7). At day 5, 6 and 7 after guide library infection, at least 1 million guide 815 

positive (BFP positive), GFP negative cells (< 25% of the mean fluorescence intensity of the 816 

entire population) were sorted (refer to Supplementary Note 1 for FACS plots and further 817 

details). This translates to approximately 1000-fold representation of the library. Guide positive 818 

cells (at least 10 million cells) were also sorted as a library control at each time point to provide 819 

a library control reference to calculate enrichment (>1000-fold representation). Cells were 820 

pelleted after sorting and stored at -80C until genomic DNA extraction was performed. Four 821 

of the GAL4-AD cell lines from the comparative CRISPR screens were also maintained until 822 

day 14 after guide infection to test which genes are required for cell growth. These four AD 823 

lines were used as independent replicates for the dropout analysis.  824 

 825 

Genomic DNA was extracted using Monarch Genomic DNA purification kit (New England 826 

Biolabs), according to the manufacturer’s instructions. PCR was conducted to maintain guide 827 

representation, using Q5 High Fidelity DNA Polymerase (New England Biolabs). PCR was 828 

performed through a one-step PCR with 28 cycles. 500ng of template was added to each PCR. 829 

One step PCR helps to avoid excessive amplification, by minimising sample processing. PCR 830 

was optimised to ensure it stays within the exponential phase. Depending on the gDNA 831 

concentration from the extraction, approximately 10-20 PCR reactions were performed per 832 

screen sample and between 30-50 PCRs per library control. PCR products were pooled and 833 

sequenced on the NextSeq500 using 75bp single-end chemistry. The samples were sequenced 834 

with the following summary statistics: Min = 3.86x106 reads, Q1 = 6.24x106 reads, Q2= 835 

7.37x106 reads, Q3 = 8.51x106 reads, Max = 12x106 reads. 836 

 837 

Analysis of comparative CRISPR screens 838 
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The sequence reads were trimmed to remove the constant portion of the sgRNA sequences with 839 

cutadapt v4.370, then mapped to the reference sgRNA library with Bowtie271. After filtering to 840 

remove multi-mapping reads, the read counts were computed for each sgRNA. After obtaining 841 

guide counts for all samples, a series of processing steps were performed to calculate mean 842 

fold enrichment values for each gene in each screen (see Supplementary Note 1 for further 843 

details). Firstly, guides that were very lowly represented (below 2.5th percentile) were filtered 844 

from the analysis, since their low representation caused extreme fold change values72,73 (see 845 

Supplementary Note 1 for further details). The counts were then normalised to sequencing 846 

depth before calculating the fold enrichment for each guide by dividing the counts for each 847 

gene in the screen samples by the counts in the library control. This resulted in a total of 18 848 

individual fold enrichments for each gene (6 guides, 3 timepoints). To remove outliers, we 849 

filtered any guides that had a fold enrichment below 0.1 or greater than 10 (see Supplementary 850 

Note 1 for further details). To improve quantification, further outliers were removed by filtering 851 

guides that were more than 4-fold away from the mean fold change value. The filtering steps 852 

applied to the data are benchmarked using two highly correlated replicates of the GAL4-NF-853 

B screen (r=0.92, Pearson) (Supplementary Note 1). 854 

 855 

Using this filtered guide list, we calculated a final fold enrichment score for each gene in each 856 

screen. In order to calculate what fold enrichment score should be considered statistically 857 

significant, a permutation test was performed for each screen (Supplementary Note 1). The 858 

permutation test shows what fold change distribution would be expected if you randomly 859 

sampled fold enrichment scores from guides in the data. Specifically, 6 guides were randomly 860 

sampled from each timepoint providing a vector of 18 values. The mean fold enrichment was 861 

calculated across these 18 values. Random sampling was performed 10000 times to produce a 862 

random sampling distribution. Genes that had an average fold enrichment above the 95th 863 

percentile of this random distribution, as well as at least 1/3rd of the guides (6/18) above the 864 

95th percentile of this distribution, were considered significant.  865 

 866 

To identify heterogeneous regulators, the coefficient of variation was calculated for each gene. 867 

To produce the heatmaps displayed in Fig. 2 and Fig. 5, the top 50 most heterogeneous 868 

cofactors were then bi-clustered based on their Pearson correlation distance. SPC24, SPC25 869 

and NUF2 were filtered from the variability analysis as the function in regulating genome 870 

ploidy has been previously demonstrated to result in spurious variability across screens74. 871 
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Two relevant regulators of transcription, CCNC and SETD1A were not represented in the 872 

library. To calculate fold enrichment scores for these genes, we performed independent KO 873 

experiments using at least 3 sgRNAs and calculated the reduction in GFP signal as described 874 

above. The fold reduction in GFP signal for these genes is displayed as the fold enrichment 875 

score in Figure 1, 3 and 5.  876 

 877 

To define which genes affected cell growth, MAGeCK v0.5.6 analysis was performed using 878 

the D14 timepoint from 4 of the AD screens, comparing them to the plasmid as the D0 879 

reference75. Any genes with an adjusted p-value below 0.05 were considered significant.  880 

 881 

ZFP-VP64 piggyBac reporter screen 882 

A replicate screen was performed using an alternative integration method and alternative DNA 883 

binding domain to demonstrate the broad relevance and reproducibility of our findings. In order 884 

to perform this screen, a construct in which VP64-AD is recruited through an artificial ZFP 885 

protein76 was developed (37ZFP, Addgene #176627). To generate the DNA binding-AD 886 

construct, the GAL4-VP64 vector was cut and the GAL4-DBD was replaced by the ZFP DNA 887 

binding domain. A fully insulated PiggyBac reporter construct was also developed. This 888 

reporter construct contains the A1 insulator77 upstream and downstream of a GFP-PEST 889 

reporter. GFP-PEST is activated by a minimal CMV promoter with 6 upstream binding sites 890 

for 37ZFP-VP64. The reporter construct was cloned by a combination of Gibson assembly and 891 

standard cut and paste cloning. The binding sites for 37ZFP were obtained by PCR from 892 

Addgene vector #176627.  893 

 894 

Upon successful cloning of both the reporter and ZFP-AD constructs, a reporter line was 895 

generated by piggyBac-mediated integration of the insulated ZFP-reporter construct. 1 million 896 

Cas9-K562 cells were transfected with 1ug of the reporter and 250ng of HyBase transposase78 897 

using the Lonza 4D nucleofection system. Transfected cells were then infected with the ZFP-898 

VP64 construct by lentiviral integration at high MOI (~90-100% of cells infected). GFP 899 

positive cells were then isolated by FACS sorting. The screen was performed and analysed as 900 

described above, in order to enable direct comparison of the results. Guides targeting FKBP1A 901 

and FKBP1C were excluded from the analysis as they directly target the ZFP sequence. 902 

 903 

Cofactor KO ChIP-seq and RNA-seq experimental design 904 
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sgRNAs targeting MED12, MED14, MED16, MED24, MED25, CDK8 and CCNC were 905 

lentivirally introduced into a K562-Cas9 clone. Cells were grown for 4 days after infection at 906 

which timepoint they were harvested for ChIP-seq. For INTS5 RNA-seq and ChIP-seq, 907 

sgRNAs targeting INTS5 were introduced into a K562-Cas9 clone. Cells were grown for 4 908 

days post guide infection and treated with PBS or TNF- for 6hrs before being harvested for 909 

ChIP-seq or RNA-seq. 910 

 911 

Cloning & Generation of dTAG knock-in cell lines 912 

The dTAG degron (FKBP12F36V) was selectively knocked-in into the N-termini of MED12, 913 

MED14 and MED25. Cloning of knock-in plasmids and the subsequent generation of knock-914 

in cells lines were conducted as previously described33,79. Briefly, the hU6-PITCh-gRNA 915 

cassette from pX330S-2-PITCh (Addgene, #63670) was subcloned into pX330A-1x2 916 

(Addgene, # 58766) via BsaI digestion to create an all-in-one CRISPR-Cas9 vector labelled 917 

pX330-A+S. sgRNAs against target loci were ligated into pX330-A+S via BpiI digestion and 918 

golden-gate assembly. Donor vectors were constructed by using PCR to add 20bp 919 

microhomology sequences against target loci to pCRIS-PITChv2-Puro-dTAG (Addgene, 920 

#91793). 750ng each of the paired gRNA (px330-A+S) and donor vectors (pCRIS-PITChv2) 921 

were electroporated into 3x105 K562 cells in Buffer R using the Neon™ Transfection System 922 

10uL kit (Thermo Fisher). Cells were allowed to recover for 48 hours, followed by 5-7 days of 923 

puromycin selection (2ug/mL). Single cell clones were isolated via FACS sorting into 96-wells 924 

and allowed to expand. Genomic DNA was isolated using DirectPCR Lysis Reagent® (Viagen 925 

Biotech) according to manufacturer’s instructions and directly used as input for genotyping 926 

PCRs. Clones demonstrating homozygous knock-in were further validated by sanger 927 

sequencing of the homozygous knock-in gel extracted product, as well as further validated by 928 

immunoblot analysis. Supplementary Table 6 lists dTAG cloning and PCR oligo sequences.  929 

 930 

Chromatin immunoprecipitation (ChIP) 931 

For each ChIP, at least 20 million cells were crosslinked for 15 mins with 1% formaldehyde. 932 

Crosslinked material was sonicated to approximately 200-1000bp using the Covaris 933 

Ultrasonicator S2. Sonicated material was incubated overnight with each antibody in IP buffer 934 

(10mM Tris-HCl pH8, 1% Triton X-100, 0.1% sodium deoxycholate, 90mM NaCl), then 935 

incubated for 3hrs with 50ul of either Protein A or Protein G Dynabeads (Thermo Fisher). 936 

Antibody bound beads were washed twice with low salt wash buffer (20mM Tris-HCl pH8, 937 
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2mM EDTA, 1% Triton X-100, 0.1% SDS, 150mM NaCl) and once with high salt wash buffer 938 

(20mM Tris-HCl pH8, 2mM EDTA, 1% Triton X-100, 0.1% SDS, 500mM NaCl) and once 939 

with TE, before the ChIP material was eluted and de-crosslinked overnight at 65 degrees in 940 

elution buffer (1% SDS, 100mM NaHCO3). DNA was purified using Qiagen Minelute 941 

columns. All ChIP antibodies were used at ~10ug per IP. Sequencing libraries were prepared 942 

using the ThruPLEX® DNA-seq kit (Takara Bio). Libraries were size selected between 200-943 

500bps and sequenced on the NextSeq500 using the 75bp single-end chemistry. The following 944 

antibodies were used for ChIP: Mouse anti-RNA polymerase II antibody clone CTD4H8 (6ul) 945 

(Merck Millipore, 05-623), Rabbit anti-NF-kB p65 antibody clone D14E12 (10ul) (Cell 946 

Signalling, 8242), mouse anti-GAL4-DBD antibody clone RK5C1 (10uL) (sc-510). For 947 

quantification of occupancy on the GAL4-reporter construct, ChIP-qPCR was performed using 948 

primers specific to the promoter of the GAL4-reporter construct and compared to a gene desert 949 

negative control region.  950 

 951 

ChIP-seq analysis 952 

Reads were aligned to the human genome (GRCh38) with Bowtie271. Duplicate reads and reads 953 

mapping to blacklist regions or mitochondria were removed. ChIP–seq coverage across 954 

selected genomic regions was calculated with BEDtools v2.31.080. To define which genes are 955 

Mediator dependent, the 10000 genes with the most RNA pol II signal across the gene were 956 

isolated. From this list, genes with at least 30% reduction in total RNA pol II signal in the 957 

MED14 KO were defined as Mediator dependent (1020 genes). For each KO sample, we then 958 

calculated the change in RNA Pol II signal by comparison to the SAFE guide control. For the 959 

mediator dTAG degron ChIP-seq analysis, correlation plots were performed on the top 10000 960 

genes by RNA Pol II signal.  961 

 962 

ChIP-nexus 963 

ChIP-nexus was performed as described previously34,81,82. Briefly, the immunoprecipitation 964 

and washes were performed using the same conditions as the ChIP protocol. Upon completion 965 

of these steps, the DNA was end-repaired, A-tailed, adaptors ligated, exonuclease treated, 966 

circularized on Dynabeads as described previously34,81,82. DNA was then eluted from the beads, 967 

and PCR was performed to produce sequencing ready libraries. For ChIP-nexus performed on 968 

the different GAL4-AD lines, DNA was sequenced on the NextSeq500 using the 75bp single-969 

end chemistry. For ChIP-nexus on the different promoter lines, DNA was sequenced on the 970 
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NextSeq500 using 75bp single-end chemistry, which was configured to produce paired-end 971 

37bp reads.  972 

 973 

ChIP-nexus data analysis 974 

ChIP-nexus analysis was performed as previously described81. Specifically, reads that passed 975 

the Illumina quality filter were filtered for the presence of a fixed barcode. The fixed barcode 976 

was used to demultiplex the samples, before being filtered from the reads by Cutadapt v4.370. 977 

The random barcode on each read was retained to enable UMI based quantification. Any 978 

remaining adapter sequences were trimmed, and reads were removed if they were less than 979 

22bp in length. Reads were then aligned using Bowtie271 to a human genome (GRCh38) that 980 

was modified to contain an additional chromosome with the relevant reporter construct 981 

sequence. Duplicate reads were removed, and each sample was converted into two bigwig files, 982 

one with strand specific information and one that aggregates the reads from both strands. The 983 

sequence coverage across the reporter construct was then visualised using IGV. To enable 984 

better visualisation of the disproportionate effect of CDK8i on elongation (Figure 4B), CDK8i 985 

samples are scaled to the height of the DMSO samples. The scale reflects the number of reads 986 

in the DMSO sample.  987 

 988 

RNA-seq 989 

RNA was extracted using the Qiagen RNeasy kit. RNA concentration was quantified with a 990 

NanoDrop spectrophotometer (Thermo Scientific). Libraries were prepared using a plate based 991 

in-house library prep method based on DRUG-seq83. The method results in 3’ RNA-seq 992 

libraries containing a UMI and a well ID on read 1, and the unique transcript information on 993 

read 2. Libraries were sequenced on the NextSeq500 using the 75bp single end chemistry, run 994 

with paired-end settings. 25bps was allocated for the Read1 and 50bps for Read2. 995 

 996 

RNA-seq analysis 997 

Fastq files were demultiplexed and mapped to the human genome (hg19) using STARsolo 998 

v2.7.9a84. Downstream processing of the output counts matrix was then performed in R. Using 999 

the Seurat package85, the raw counts matrix was transformed and then subject to differential 1000 

gene expression analysis using DESeq2 v3.1886. Genes were classified as differentially 1001 

expressed if they had an absolute fold change above 1.5 and a p-value <0.05. TNF target genes 1002 

were defined as genes with a fold increase greater than 1.5 with a p-value < 0.05 and displayed 1003 

a p65 binding defined by MACS2 v2.2.7 within 10kb of the gene.  1004 
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SLAM-seq 1005 

SLAM-seq was performed as previously described with minor modifications87. Briefly, a total 1006 

of 107 K562 cells were treated with dTAGV-1 (Tocris) as described above for a total of 4 hours. 1007 

In the final hour of treatment, cells were labelled with 200uM of 4-thioruidine (4sU; Cayman 1008 

Chemical) to capture nascent mRNA transcripts. RNA extraction was performed using TRIzol 1009 

(Ambion) following the manufacturer's instructions, with the addition of 1mM DTT to the 1010 

isopropanol precipitation and ethanol wash steps. Total RNA was eluted in nuclease-free H2O 1011 

containing 0.1mM DTT. 10ug of total RNA was treated with fresh 10mM iodoacetamide 1012 

(Pierce) in reaction buffer containing 50mM Tris, pH 8.0 and 50% DMSO at 50oC for 15 1013 

minutes, light-protected and shaking at 1000rpm. The alkylation reaction was quenched with 1014 

20mM of fresh DTT, followed by adding 1ug of unlabelled Drosophila S2 RNA. Total RNA 1015 

was cleaned up using the RNeasy MinElute Cleanup Kit (Qiagen) and DNAse treated. Libraries 1016 

were prepared using 500ng of material using the QuantSeq 3’ mRNA-Seq Library Prep Kit 1017 

FWD (Lexogen; V1 kit with single 6nt i7 indexes) according to the standard manufacturer’s 1018 

protocol. Sequencing of cDNA libraries was performed on the Illumina NextSeq2000 with 1019 

100bp single-end configuration. SLAM-seq was performed in biological triplicate.  1020 

 1021 

SLAM-seq analysis 1022 

Quality assessment was performed on sequenced reads using FastQC v0.11.6 and adapters 1023 

were trimmed using TrimGalore v0.6.6 and Cutadapt v4.370. Read alignment to HG38 1024 

reference genome, read filtering, SNP calling and masking, and feature calling were performed 1025 

with SlamDunk v0.2.488. Reads containing at least 2 T>C conversions were retained as nascent 1026 

transcripts. edgeR v3.38.189 was used to perform TMM normalisation, before performing 1027 

differential expression analysis with limma voom v3.52.190. Genes defined as down-regulated 1028 

were those with a negative fold change value and an adjusted p-value < 0.05. 1029 

 1030 

GAL4-AD protein expression levels and stability  1031 

As commercially available GAL4 antibodies performed unreliably in western blot, it was 1032 

necessary to introduce an epitope tag to the GAL4-AD constructs. The DBD region of each 1033 

GAL4-AD construct was replaced by a 3xFLAG tagged GAL4-DBD synthesized by IDT. 1034 

FLAG-GAL4-ADs constructs were introduced at a high MOI into K562-Cas9 cells containing 1035 

the 5xUAS mCMV GFP-PEST reporter to confirm that their transactivation capacity was not 1036 

impacted by the addition of the FLAG tag. Cells were sorted based on the same relative levels 1037 

of GAL4-AD expression as the original GAL4-AD lines used for the screens. This was 1038 
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achieved by direct comparison of the expression level of the IRES mCherry in the original AD 1039 

cell lines and the newly derived AD cell lines. To assess protein expression and stability, one 1040 

million of each of the FLAG-GAL4-AD cell lines were treated with either DMSO or 1041 

cycloheximide (100uM) for 24hrs before being harvested for western blot.  1042 

 1043 

Immunoblot 1044 

Cells were lysed in RIPA lysis buffer (50mM Tris (pH 7.4), 150mM NaCl, 1mM EDTA, 1% 1045 

Triton X-100, 0.5% sodium deoxycholate, 0.5% SDS supplemented with protease and 1046 

phosphatase inhibitors (Roche)) and protein concentration was determined using a BCA 1047 

protein assay kit (Pierce). Normalised concentrations of lysate were reduced and denatured for 1048 

5 min at 95oC in Laemmli buffer containing 10% beta-mercaptoethanol and subsequently 1049 

electrophoresed on 4–15% precast polyacrylamide gels (Mini-PROTEAN® TGX; Bio-Rad) 1050 

under denaturing conditions. Proteins were wet transferred onto PVDF using the Mini Trans-1051 

Blot Electrophoretic Transfer Cell System (Bio-Rad) at 100V (400mA) for 60 min at 4oC. 1052 

Membranes were blocked for 1 hour at room temperature in Intercept® Blocking Buffer (LI-1053 

COR) and subsequently probed with the following primary antibodies diluted at 1:1000 in 1054 

blocking buffer supplemented with 0.1% Tween-20 overnight at 4oC on a roller: anti-HA-TAG 1055 

(Cell Signaling, #2367), anti-MED12 (Bethyl Laboratories, #A300-774A), anti-MED14 1056 

(Abcam; #ab72141), anti-MED25 (Abcam, #ab221741), anti-MYC (Abcam, #ab32072), anti-1057 

alpha-tubulin (Cell Signaling Technology; #3873), mouse anti-FLAG M2 (Sigma, #F3165), 1058 

rabbit anti-LAMIN-B1 clone D4Q4Z (Cell Signaling,  #12586). After washing, membranes 1059 

were probed with the appropriate IRDye-conjugated secondary antibodies (LI-COR, 926-1060 

68071, 926-32210) diluted at 1:10,000 for 1 hour at room temperature. Membranes were 1061 

scanned using an Odyssey ® Infrared Imaging System (LI-COR).  1062 

 1063 

Luciferase assays 1064 

To generate the reporter constructs for the luciferase assays, promoters of interest were cloned 1065 

into the pGL4.35 (luc2p/9xgal4uas/hygro) luciferase construct (Promega, E1370) downstream 1066 

of the 9xUAS site. Luciferase constructs were introduced into HEK293T cells by transient 1067 

transfection using PEI. The luciferase construct of interest was co-transfected with or without 1068 

the relevant GAL4-AD and the pRL Renilla control (Promega, E2261). Cells were harvested 1069 

48hrs after transfection. Luciferase signal and Renilla signal were analysed using the Dual-1070 

Luciferase reporter system (Promega, E1910) using the Cytation 3 plate-reader (BioTek). 1071 

 1072 
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Statistics and reproducibility 1073 

No statistical method was used to predetermine sample size. No data were excluded from the 1074 

analyses. Experiments were not randomized. The investigators were not blinded to the 1075 

allocation during experiments and outcome assessment. 1076 

 1077 

Data availability  1078 

All high-throughput sequencing data relevant to this study have been deposited in the NCBI 1079 

Gene Expression Omnibus under primary accession code: GSE198944. All of the relevant 1080 

source data has been provided with the manuscript.   1081 

 1082 

Code availability 1083 

The manuscript does not include any custom code beyond implementation of pre-existing 1084 

publicly available software packages. All computational analysis can be reproduced from the 1085 

descriptions provided in the methods using the listed publicly available software.   1086 
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Supplementary Note 1 – designing and analysing comparative CRISPR screens 
 
Our manuscript pioneers the use of comparative CRISPR screens. Most prior studies that have 
used CRISPR screens have been designed with the intention of identifying individual hits that 
regulate a specific phenotype of interest1. These hits are then validated and studied in further 
detail. For that purpose, it is not necessary to obtain a highly quantitative measure of the degree 
of enrichment of individual genes, as the hits do not need to be compared across different 
screening conditions. Here, our goal was to compare across screens to obtain more general 
insights into the specificity of transactivation domains and core promoters. We hoped to use 
the screens not only to identify important cofactors, but to provide insights into their degree of 
requirement across different conditions. This requires a relatively reproducible and precise 
measure of guide enrichment.  
 
Since most CRISPR screens are not designed to obtain quantitative information, the analysis 
tools currently available are not designed to handle multiple timepoints, or to compare 
enrichment values across screens. As a result, it was necessary for us to develop bespoke screen 
design and analysis methods that would provide the most accurate quantitative information. In 
this Supplementary Note, we discuss the rationale and provide justification for the screen 
design and analyses steps we performed. We also demonstrate how the inclusion of certain 
filters in the analyses improve the reproducibility of the data. 
 
Throughout, we benchmark our analysis approach by using two independent biological 
replicates performed on GAL4-NfKB activating the minimal CMV promoter. Upon processing 
the data according to our pipeline, the two replicates have a very high degree of correlation 
(r=0.918, Pearson), demonstrating that our design and analysis pipeline produces highly 
reproducible data. 
 

 
Supplementary Note Fig. 1) Correlation between the fold enrichment scores in the two replicates of 
the GAL4-NfKB mCMV screens. r = Pearson correlation. PCNA is outlined as the only major outlier. 
Error bands reflect 95% confidence interval of Pearson correlation. 
 
Demonstrating the importance of filtering outliers for accurate quantification of the 
screen data 
In the analysis of CRISPR screen data, fold enrichment values are calculated for each guide in 
the library by dividing the number of counts in the screen sample by the number of counts in 



the matched library control. Our library contains 6 different guides targeting each gene and we 
isolated samples at 3 timepoints (D5, D6 and D7 after guide library infection). This resulted in 
a total of 18 guide enrichment values for each gene in each screen. These 18 enrichment values 
were averaged, resulting in a single fold enrichment value per gene per screen.  
 
Upon initial inspection of the raw data, we noticed single sgRNAs targeting a gene with fold 
enrichment values of up to 500-fold, when other independent sgRNAs against the same gene 
were not enriched. These are examples of outliers potentially caused by random sampling 
variation, or due to random overamplification in the PCR step, which is an issue that has been 
previously reported in CRISPR screens2. Inclusion of these guides in the analysis would 
obscure the calculation of an accurate fold enrichment value. Consequently, we realised that 
some filtering of the guides would be necessary to remove outliers.  
 
The following filtering steps were applied during the processing of the data: 

1) Removal of guides with low guide counts in the plasmid pool (lowest 2.5% of guides)  
2) Removal of guides that have a fold enrichment value below 0.1 or above 10-fold 
3) Removal of guides that have a fold enrichment value that > 4-fold from the mean fold 

enrichment value (mean of 18 values – i.e., all 6 sgRNA’s for a particular gene assessed 
at D5, D6, D7) 

 
We demonstrate how each of these steps helped to improve the quality of the data below. 
 
Removal of lowly represented guides:  
To reduce the prevalence of outlier guides, we initially removed guides with low counts, which 
is a common processing step in CRISPR screens3. Low representation can cause sampling error 
in the dataset resulting in erratic fold change values. Prior studies remove the bottom 5% of 
guides3, however due to our low skew ratio (4.38) and our desire to retain as many guides as 
possible, we decided to only remove the bottom 2.5% of guides.  
 
Filtering guides with fold enrichment below 0.1 or above 10: 
Even upon removal of these lowly represented guides, we still observed guides with unrealistic, 
high fold enrichment values that were not correlated between biological replicates 
(Supplementary Note Fig. 2, top right). These guides interfere with an accurate calculation of 
fold enrichment values. Therefore, we reasoned that further filtering was necessary. In order to 
set appropriate thresholds for filtering outlier guides from the screen data, we leveraged our 
two biological replicates of the GAL4-NfKB mCMV screen. We noted that none of the 
sgRNAs with fold enrichment values above 10 were correlated between the two replicates 
suggesting that a score above 10 is very unlikely to reflect a real enrichment score 
(Supplementary Note Fig. 2, top right). Therefore, we filtered any guides with a fold 
enrichment value above 10. We also reasoned that a depletion of 10-fold was just as likely to 
be due to sampling error as an enrichment above 10, so as not to bias the data in a specific 
direction, we also removed guides with a fold enrichment below 0.1. This filter dramatically 
improved the reproducibility between the replicates (Supplementary Note Fig. 2, bottom left). 
 
Filtering guides with fold enrichment value > 4-fold from the mean: 
The final filter we applied, removed guides that were four-fold away from the mean fold change 
calculated from the 18 individual enrichment values (i.e., all 6 sgRNAs for a particular gene 
assessed at D5, D6, D7). This filter was applied because we noted that some target genes were 
being classified as significant due to a single outlier guide (enrichment value < 10 and > 0.1) 
that caused the fold enrichment for that gene to increase beyond the significance cut-off. 



Introduction of this filter clearly reduces the dispersion of the data (observable by the reduced 
spread of the values around a fold change of 1). This filter also increased the Pearson 
correlation between replicates from r=0.890 to r=0.918 (Supplementary Note Fig. 2, bottom 
right).  
 

 
Supplementary Note Fig. 2) Correlation plot of fold enrichment scores of all genes in the library across 
two replicates of GAL4-NfKB mCMV screen with different guide filtering applied. (Top Left) No filter 
applied. (Top Right) Removing bottom 2.5% represented guides in the plasmid pool. (Bottom left) 
removing guides with a fold enrichment over 10-fold. (Bottom right) removing guides with a fold 
enrichment more than 4-fold away from the mean value of all 18 guides. r=Pearson correlation. Error 
bands reflect 95% confidence interval of Pearson correlation. 
 
The three filters we applied to the raw guide values were the only methods of post-processing 
performed on the raw data prior to the calculation of a fold enrichment value. By using the 
biological replicates of the same screen, we can see that each of these filtering steps increased 
the reproducibility and were necessary to obtain an accurate fold enrichment value.  
 
Demonstrating the importance of using multiple timepoints  
Based on our prior experience with CRISPR screens4–9, we reasoned that it would be necessary 
to include multiple timepoints as part of our screen design to reduce the potential effects of 
sampling error, by increasing the number of sampling events per guide. Since our screens were 



performed at a relatively early timepoint, we also reasoned that using multiple timepoints 
would help to minimise overlooking guides that work with different kinetics. Once again, we 
can compare the results from the two independent biological replicates, to assess how 
aggregating across the three timepoints (D5, D6 and D7 post guide infection) helped to improve 
the reproducibility of the results. 
 
To assess how aggregating the timepoints impacts the data, we can compare the correlation 
between individual timepoints from our two biological replicates, with the correlation when all 
three timepoints are aggregated. We found that the day 5 timepoint has greater variability 
between the two biological replicates, than the day 6 and day 7 timepoint (Supplementary Note 
Fig. 3), which suggests that while day 5 provides a window into the earliest changes that occur 
after gene knockout, these early changes are more prone to variability likely due to kinetic 
differences in sgRNA integration, expression and editing efficiency. At day 6 and day 7, the 
enrichments are far more consistent across the two biological replicates (Supplementary Note 
Fig. 3). However, aggregating the data across all three timepoints produces the highest 
correlation between the two biological replicates (Supplementary Note Fig. 3). 
 

 
 
Supplementary Note Fig. 3) Correlation between two NfKB CMV biological replicates at each of the 
screen timepoints, as well as the data aggregated across the 3 timepoints. Each dot represents the fold 
enrichment of the 6 guides that target each gene, other than the aggregated plot, which represents the 
average of all 18 datapoints. R = Pearson correlation. (Bottom left) Bar plot shows the number of genes 
that differ in fold enrichment values by at least 2-fold between the two biological replicates at each 
timepoint and in the aggregated data. Error bands reflect 95% confidence interval of Pearson 
correlation. 
 
To further reinforce the value of aggregating the three timepoints, we calculated how many 
genes display at least a 2-fold difference in enrichment values between the two biological 



replicates. This analysis demonstrates that aggregating the data dramatically reduces the 
number of genes with a greater than 2-fold difference between replicates (Supplementary Note 
Fig. 3, Bottom Right). Only 9 genes display a difference of at least 2-fold between the two 
biological replicates when the data is aggregated. This reflects a greater than 3-fold 
improvement over the most reproducible individual timepoint (day 6). Overall, by aggregating 
across three timepoints, we can both capture the earliest consequences of gene knockout, while 
improving the reproducibility of the screens. 
 
Permutation test approach to calculate an empirical p-value for each gene  
The majority of the data presented throughout the manuscript uses the fold enrichment score 
to represent the requirement for a particular cofactor. For the most part, we avoided 
categorizing the data unnecessarily, as cofactor requirement appears to exist on a spectrum and 
is therefore not a categorical variable. However, for some of the analyses, it was helpful to 
define which genes were statistically significantly enriched in each screen. It is important to 
point out that classification as a hit based on statistical significance does not have any impact 
on the calculation of the fold enrichment score.  
 
In order to calculate which genes should be considered significantly enriched in each screen, 
we used permutation testing to calculate empirical p-values. Permutation testing works by 
randomly sampling from the data to obtain an empirical distribution of the values. We obtained 
this distribution by randomly sampling 18-fold enrichment values (6 from each timepoint) from 
the 7240 guides in the library. Sampling was performed 10000 times on the data that had been 
pre-filtered to remove outliers (using the above methods). An independent permutation test was 
performed for each screen to ensure that we were accounting for screen specific differences in 
the distribution of values. The cut-off to categorize a gene as statistically significant was a fold 
enrichment score above the 95th percentile of this random sampling distribution, which equates 
to an empirical p value < 0.05. The 95th percentile of the random distribution was similar across 
all of the AD screens suggesting that the distribution of guide values was very similar across 
all of the screens.  
 
The values that correspond to the 95th percentile of this random sampling distribution are 
provided in a table below: 
AD screen Enrichment score for p<0.05 
GAL4-VP64 1.48 
GAL4-MYB 1.46 
GAL4-EWS 1.44 
GAL4-NfKB 1.60 
GAL4-P53 1.44 
GAL4-IRF1 1.48 
GAL4-PU1 1.54 
GAL4-Notch 1.57 
GAL4-GR 1.61 

 



 
Supplementary Note Fig. 4) Random sampling distributions obtained from permutation test 
performed on each screen. Solid red line reflects the 95th percentile of the distribution which 
corresponds to an empirical p-value < 0.05. The dashed red line reflects the 99.9th percentile, 
which corresponds to an empirical p-value <0.001. 
 
To provide extra stringency to what is classified as a hit, we also reasoned that genuine hits 
should have multiple guides enriched. Therefore, we applied an additional cut-off for 
significance that at least 1/3rd of the guide values (6 out of 18 values) should display a fold 
enrichment score above the 95th percentile. This cut-off did not have a dramatic effect on the 
number of genes classified as hits, but did further increase the stringency of the data, by 
reducing the impact of certain individual guides.  
 
Obtaining quantitative information from CRISPR screen data 
As stated above our ambition for the comparative CRISPR screens was to obtain relatively 
quantitative data about the degree of requirement for different cofactors across a range of ADs 
and core promoters. Generally, CRISPR screens are considered to provide a binary output i.e., 
a gene is either identified as required or not. This is largely due to the design of the screens and 
the gates used to isolate cells displaying a particular phenotype. For our screens, as 
demonstrated above and throughout the manuscript, we were able to achieve relatively accurate 



and sensitive quantification of the transcriptional effects of different cofactors. This was 
achieved by setting the gates for isolating cells at an intermediate distance (0.25 of the Mean 
Fluorescence Intensity (M.F.I) from the initial normal distribution of GFP expression 
(Supplementary Note Fig. 5). By setting the gate at an intermediate distance, we were able to 
isolate a different number of cells in the GFP-negative gate depending on the degree of effect 
on transcription (Supplementary Note Fig. 5, left). Setting the gate too close to the MFI of the 
unperturbed cells would result in genes with large effects on transcription having similar 
enrichment to genes with low effect sizes. Setting the gate too far from the main population of 
would result in genes with smaller effect sizes not being identified, reducing the sensitivity of 
the screens. 
 

 
Supplementary Note Fig. 5) (Left) Schematic demonstrating the logic of the gating strategy 
that enables quantitative data to be obtained from a single gated-CRISPR screen. (Right) FACS 
gating strategy applied to each of the samples in the AD-screens. M.F.I = mean fluorescence 
intensity (i.e., average GFP signal). 
 
Various pieces of evidence suggest that our screens resulted in quantitative data. The high 
degree of correlation in fold enrichment values (Extended Data Fig. 2B), correlation between 
the degree of requirement and specificity of the cofactors (Fig. 2A) support the quantitative 
nature of the screens. Likewise, our co-dependency analysis identified highly concordant 
patterns of requirement across different subunits in the same complex, which would not have 
been observable if the screen data was not highly quantitative (Extended Data Fig. 8B). Our 
validation experiments also demonstrate that there is a high degree of concordance between the 
fold enrichments identified in the screen and the fold change in transcription in our validation 
experiments (Fig. 2C-D). Altogether, these data demonstrate that our gating approach was 
capable of obtaining quantitative data from CRISPR screens. The accuracy and reproducibility 
of the quantification is likely the result of the many design and analyses choices detailed above. 
 
 
 



Supplementary Note References 
 
1. Michlits, G. et al. CRISPR-UMI: Single-cell lineage tracing of pooled CRISPR-Cas9 

screens. Nat Methods 14, 1191–1197 (2017). 
2. Parnas, O. et al. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect 

Regulatory Networks. Cell 162, 675–686 (2015). 
3. Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-

Tumour immunity. Nature 549, 101–105 (2017). 
4. Sparbier, C. E. et al. Targeting Menin disrupts the KMT2A/B and polycomb balance to 

paradoxically activate bivalent genes. Nat Cell Biol (2023) doi:10.1038/s41556-022-
01056-x. 

5. Burr, M. L. et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC 
Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer 
Cell 1–17 (2019) doi:10.1016/j.ccell.2019.08.008. 

6. Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance 
in acute myeloid leukaemia. Nat Commun 10, 2723 (2019). 

7. MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. 
Nature 577, 266–270 (2020). 

8. Gilan, O. et al. CRISPR–ChIP reveals selective regulation of H3K79me2 by Menin in 
MLL leukemia. Nat Struct Mol Biol (2023) doi:10.1038/s41594-023-01087-4. 

  


	Bell_NatGen_combined_PMC
	Manuscript_NatureGenetics_PMC_version
	Bell_NatGen_combined
	68405_2_merged_1712696622
	Bell_Fig1
	Bell_Fig2
	Bell_Fig3
	Bell_Fig4
	Bell_Fig5
	Bell_Fig6
	Bell_ED_Fig1
	Bell_ED_Fig2
	Bell_ED_Fig3
	Bell_ED_Fig4
	Bell_ED_Fig5
	Bell_ED_Fig6
	Bell_ED_Fig7
	Bell_ED_Fig8
	Bell_ED_Fig9
	Bell_ED_Fig10
	Bell_FACSgating
	Bell_SupplementaryNote1


	Manuscript_NatureGenetics_PMC_version



