Genome-wide screening identifies cell-cycle control as a synthetic lethal pathway with SRSF2P95H mutation
Details
Publication Year 2022-04-12,Volume 6,Issue #7,Page 2092-2106
Journal Title
Blood Advances
Publication Type
Research article
Abstract
Current strategies to target RNA splicing mutant myeloid cancers proposes targeting the remaining splicing apparatus. This approach has only been modestly sensitizing and is also toxic to non-mutant-bearing wild-type cells. To explore potentially exploitable genetic interactions with spliceosome mutations, we combined data mining and functional screening for synthetic lethal interactions with an Srsf2P95H/+ mutation. Analysis of missplicing events in a series of both human and murine SRSF2P95H mutant samples across multiple myeloid diseases (acute myeloid leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia) was performed to identify conserved missplicing events. From this analysis, we identified that the cell-cycle and DNA repair pathways were overrepresented within the conserved misspliced transcript sets. In parallel, to functionally define pathways essential for survival and proliferation of Srsf2P95H/+ cells, we performed a genome-wide Clustered regularly interspaced short palindromic repeat loss-of-function screen using Hoxb8 immortalized R26-CreERki/+Srsf2P95H/+ and R26-CreERki/+Srsf2+/+ cell lines. We assessed loss of single guide RNA representation at 3 timepoints: immediately after Srsf2P95H/+ activation, and at 1 week and 2 weeks after Srsf2P95H/+ mutation. Pathway analysis demonstrated that the cell-cycle and DNA damage response pathways were among the top synthetic lethal pathways with Srsf2P95H/+ mutation. Based on the loss of guide RNAs targeting Cdk6, we identified that palbociclib, a CDK6 inhibitor, showed preferential sensitivity in Srsf2P95H/+ cell lines and in primary nonimmortalized lin-cKIT+Sca-1+ cells compared with wild-type controls. Our data strongly suggest that the cell-cycle and DNA damage response pathways are required for Srsf2P95H/+ cell survival, and that palbociclib could be an alternative therapeutic option for targeting SRSF2 mutant cancers.
Keywords
Animals; Humans; *Leukemia, Myeloid, Acute/drug therapy; Mice; Mutation; *Myelodysplastic Syndromes/genetics; *RNA Splicing; Serine-Arginine Splicing Factors/*genetics
Department(s)
Laboratory Research
PubMed ID
34464972
Open Access at Publisher's Site
https://doi.org/10.1182/bloodadvances.2021004571
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2025-05-16 01:15:08
Last Modified: 2025-05-16 01:16:07

© 2025 The Walter and Eliza Hall Institute of Medical Research. Access to this website is subject to our Privacy Policy and Terms of Use

An error has occurred. This application may no longer respond until reloaded. Reload 🗙