Intrinsic and acquired cancer immunotherapy resistance
Journal Title
In: Amiji, M.M., Milane, L.S. (eds) Cancer Immunology and Immunotherapy. Volume 1 of Delivery Strategies and Engineering Technologies in Cancer Immunotherapy
Publication Type
Book section
Abstract
Cancer immunotherapies, such as immune checkpoint inhibitors (ICIs), have revolutionized the treatment of various cancers and have shown a great efficacy in inducing antitumor immunity. Cancer immunotherapy in the form of adoptive cell transfer (ACT) have also been developed to eradicate tumor cells in a specific and effective manner, and it includes the administration of autologous tumor-infiltrating T-cells (TILs), T-cell receptor (TCR)-modified T-cells, or genetically engineered chimeric antigen receptor (CAR)-specific T-cells (CARTs) in cancer patients. Additionally, cancer vaccines and recombinant cytokines can be used as monotherapy or adjuvant therapy. Despite the success of immunotherapies in treating various solid tumors and hematologic malignancies, a significant number of patients do not benefit from these therapies and exhibit limited or no response. Some cancer patients do not respond to immunotherapies as a result of primary or intrinsic tumor resistance, while others respond to immunotherapies but develop resistance over time, referred to as adaptive or acquired tumor resistance. Tumor intrinsic- and extrinsic-mediated mechanisms, including genetic and epigenetic alterations, tumor-mutational loads, overexpression of co-inhibitory immune checkpoints, and elevated levels of suppressive immune cells and cytokines, can lead to a compromised antitumor immunity favoring tumorigenesis and cancer progression. This chapter outlines mechanisms of intrinsic tumor resistance and the emergence of acquired tumor resistance to cancer immunotherapies. Moreover, this chapter describes combined cancer immunotherapies, which may offer a great therapeutic potential to overcome tumor resistance against therapy and improve clinical outcomes in cancer patients.
Publisher
Academic Press
Keywords
Cancer; Immunotherapy; Immune checkpoint inhibitor; Adoptive T-cell therapy; Tumor microenvironment; Intrinsic resistance; Acquired resistance; Epigenetics; Therapeutic strategies
Department(s)
Laboratory Research
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2025-04-03 06:48:10
Last Modified: 2025-04-03 06:49:14

© 2025 The Walter and Eliza Hall Institute of Medical Research. Access to this website is subject to our Privacy Policy and Terms of Use

An error has occurred. This application may no longer respond until reloaded. Reload 🗙