Multi-substrate Metabolic Tracing Reveals Marked Heterogeneity and Dependency on Fatty Acid Metabolism in Human Prostate Cancer
Details
Publication Year 2023-04-01,Volume 21,Issue #4,Page 359-373
Journal Title
Molecular Cancer Research
Publication Type
Research article
Abstract
Cancer cells undergo metabolic reprogramming to meet increased bioenergetic demands. Studies in cells and mice have highlighted the importance of oxidative metabolism and lipogenesis in prostate cancer; however, the metabolic landscape of human prostate cancer remains unclear. To address this knowledge gap, we performed radiometric (14C) and stable (13C) isotope tracing assays in precision-cut slices of patient-derived xenografts (PDX). Glucose, glutamine, and fatty acid oxidation was variably upregulated in malignant PDXs compared with benign PDXs. De novo lipogenesis (DNL) and storage of free fatty acids into phospholipids and triacylglycerols were increased in malignant PDXs. There was no difference in substrate utilization between localized and metastatic PDXs and hierarchical clustering revealed marked metabolic heterogeneity across all PDXs. Mechanistically, glucose utilization was mediated by acetyl-CoA production rather than carboxylation of pyruvate, while glutamine entered the tricarboxylic acid cycle through transaminase reactions before being utilized via oxidative or reductive pathways. Blocking fatty acid uptake or fatty acid oxidation with pharmacologic inhibitors was sufficient to reduce cell viability in PDX-derived organoids, whereas blockade of DNL, or glucose or glutamine oxidation induced variable and limited therapeutic efficacy. These findings demonstrate that human prostate cancer, irrespective of disease stage, can effectively utilize all metabolic substrates, albeit with marked heterogeneity across tumors. We also confirm that fatty acid uptake and oxidation are targetable metabolic dependencies in human prostate cancer. IMPLICATIONS: Prostate cancer utilizes multiple substrates to fuel energy requirements, yet pharmacologic targeting of fatty acid uptake and oxidation reveals metabolic dependencies in localized and metastatic tumors.
Publisher
American Association for Cancer Research
Keywords
Male; Humans; Mice; Animals; *Glutamine/metabolism; *Prostatic Neoplasms/pathology; Energy Metabolism; Fatty Acids/metabolism; Disease Models, Animal; Glucose
Department(s)
Laboratory Research
PubMed ID
36574015
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2023-07-19 07:47:31
Last Modified: 2023-07-19 07:47:59

© 2024 The Walter and Eliza Hall Institute of Medical Research. Access to this website is subject to our Privacy Policy and Terms of Use

An error has occurred. This application may no longer respond until reloaded. Reload 🗙