Functional Lung Avoidance Planning Using Multicriteria Optimization
- Author(s)
- Bucknell, N; Hardcastle, N; McIntosh, L; Ball, D; Hofman, MS; Kron, T; Siva, S;
- Details
- Publication Year 2024-11,Volume 14,Issue #6,Page e480-e486
- Journal Title
- Practical Radiation Oncology
- Publication Type
- Research article
- Abstract
- PURPOSE: Functional lung avoidance (FLA) radiation therapy is an evolving field. The aim of FLA planning is to reduce dose to areas of functioning lung, with comparable target coverage and dose to organs at risk. Multicriteria optimization (MCO) is a planning tool that may assist with FLA planning. This study assessed the feasibility of using MCO to adapt radiation therapy plans to avoid functional regions of lung that were identified using a (68)Ga-4D-V/Q positron emission tomography/computed tomography. METHODS AND MATERIALS: A prospective clinical trial U1111-1138-4421 was performed in which patients had a (68)Ga-4D-V/Q positron emission tomography/computed tomography before radiation treatment. Of the 72 patients enrolled in this trial, 38 patients had stage III non-small cell lung cancer and were eligible for selection into this planning study. Functional lung target volumes HF lung (highly functioning lung) and F lung (functional lung) were defined using the ventilated and perfused lung. Using knowledge-based planning, a baseline anatomic plan was created, and then a functional adapted plan was generated using multicriteria optimization. The primary aim was to spare dose to HF lung. Using the MCO tools, a clinician selected the final FLA plan. Dose to functional lung, target volumes, organs at risk and measures of plan quality were compared using standard statistical methods. RESULTS: The HF lung volume was successfully spared in all patients. The F lung volume was successfully spared in 36 of the 38 patients. There were no clinically significant differences in dose to anatomically defined organs at risk. There were differences in the planning target volume near maximum and minimum doses. Across the entire population, there was a statistically significant reduction in the functional mean lung dose but not in the functional volume receiving 20 Gy. All trade-off decisions were made by the clinician. CONCLUSIONS: Using MCO for FLA was achievable but did result in changes to planning target volume coverage. A distinct advantage in using MCO was that all decisions regarding the cost and benefits of FLA could be made in real time.
- Publisher
- Elsevier
- Keywords
- Humans; *Radiotherapy Planning, Computer-Assisted/methods; *Lung Neoplasms/radiotherapy; Prospective Studies; *Radiotherapy Dosage; Organs at Risk/radiation effects; Female; Male; Lung/diagnostic imaging/radiation effects; Carcinoma, Non-Small-Cell Lung/radiotherapy/pathology/diagnostic imaging; Middle Aged; Aged; Positron Emission Tomography Computed Tomography/methods
- Department(s)
- Radiation Oncology; Physical Sciences; Cancer Imaging
- Publisher's Version
- https://doi.org/10.1016/j.prro.2024.04.014
- Terms of Use/Rights Notice
- Refer to copyright notice on published article.
Creation Date: 2024-11-28 06:25:27
Last Modified: 2024-11-28 06:29:09